Leonard Friedrich Bereska

Amsterdam, Netherlands leonard.bereska@uva.nl | +31 683376135 PhD Candidate | AI Safety | UvA, Amsterdam

PROFILE

AI Safety enthusiast | Mechanistic Interpretability | JAX | Functional Programming

TECHNICAL SKILLS

- Python JAX PyTorch •
- Functional Programming
- Git Bash
- Linux \text{ETEX}

LANGUAGE SKILLS

GERMAN NATIVE SPEAKER ENGLISH FLUENT DUTCH CONVERSATIONAL MANDARIN CONVERSATIONAL FRENCH BASIC ITALIAN BASIC LATIN ADVANCED LATINUM ANCIENT GREEK GRAECUM OLD HEBREW HEBRAICUM

EDUCATION

UNIVERSITY OF AMSTERDAM PHD IN ARTIFICIAL INTELLIGENCE

Since October 2021. Expected Graduation: 2025 | Amsterdam, Netherlands Pioneering transformer model interpretability through monosemanticity engineering for enhanced AI safety. Focused on AI Alignment strategies to ensure long-term value preservation.

UNIVERSITY OF HEIDELBERG MSc IN PHYSICS - FINAL GRADE 1.0

Graduated in February 2019 | Heidelberg, Germany Visual Learning and Computer Vision (1.0), Machine Learning (1.0), Artificial Intelligence (1.0), Time Series Analysis (1.0). Thesis: 'Unsupervised Disentanglement of Geometric Shape and Visual Appearance' (1.0).

UNIVERSITY OF HEIDELBERG BSc IN PHYSICS - FINAL GRADE 1.7

Graduated in September 2016 | Heidelberg, Germany Analysis 1 and 2 (2.3; 1.7), Linear Algebra 1 and 2 (1.3; 2.0), Theoretical Statistical Physics (1.3). Thesis: 'Optical Crosstalk in the Mu3e-Tile-Detector' (2.0).

NATIONAL TAIWAN UNIVERSITY EXCHANGE STUDENT

September 2014 - July 2015 | Taipei, Taiwan er- Advanced-level Mandarin Chinese studies.

GYMNASIUM ERNESTINUM ABITUR - FINAL GRADE 1.1

Graduated in July 2012 | Celle, Germany Prized by German Mathematical, Physical, and Chemical Societies.

PUBLICATIONS

LORENZ, D., BERESKA, L., MILBICH, T., AND OMMER, B. (2019) Unsupervised part-based disentangling of object shape and appearance. CVPR, 2019 (oral, best paper finalist). BRENNER, M., BERESKA, L., MIKHAEIL, J. M., HESS, F., MONFARED, Z., KUO, P.-C., & DURSTEWITZ, D. (2021) Tractable Dendritic RNNs for Identifying Unknown Nonlinear Dynamical Systems. ICML, 2021. BERESKA L. GAVVES F. (2022) Continual Learning of Dynamical

BERESKA, L., GAVVES, E. (2022). Continual Learning of Dynamical Systems with Competitive Federated Reservoir Computing. Conference on Lifelong Learning Agents, 2022. Published in PMLR. **BERESKA, L., GAVVES, E. (2023).** Taming Simulators: Challenges, Pathways and Vision for the Alignment of Large Language Models. AAAI Inaugural Summer Symposium Series, 2023.

WORK EXPERIENCE

UNIVERSITY OF HEIDELBERG RESEARCH ASSISTANT

February 2019 - today | Heidelberg, Germany Infused dendritic computation principles into neural networks. Explored novel optimization criteria for dynamical systems.

CENTRAL INSTITUTE OF MENTAL HEALTH RESEARCH INTERN

August 2017 - October 2017 | Mannheim, Germany Investigated initialization schemes for a piecewise-linear recurrent neural network using expectation-maximization.